Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Engineering an antibody with picomolar affinity to DOTA chelates of multiple radionuclides for pretargeted radioimmunotherapy and imaging

Identifieur interne : 002F78 ( Main/Repository ); précédent : 002F77; suivant : 002F79

Engineering an antibody with picomolar affinity to DOTA chelates of multiple radionuclides for pretargeted radioimmunotherapy and imaging

Auteurs : RBID : Pascal:11-0205016

Descripteurs français

English descriptors

Abstract

Introduction: In pretargeted radioimmunotherapy (PRIT), a bifunctional antibody is administered and allowed to pre-localize to tumor cells. Subsequently, a chelated radionuclide is administered and captured by cell-bound antibody while unbound hapten clears rapidly from the body. We aim to engineer high-affinity binders to 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelates for use in PRIT applications. Methods: We mathematically modeled antibody and hapten pharmacokinetics to analyze hapten tumor retention as a function of hapten binding affinity. Motivated by model predictions, we used directed evolution and yeast surface display to affinity mature the 2D12.5 antibody to DOTA, reformatted as a single chain variable fragment (scFv). Results: Modeling predicts that for high antigen density and saturating bsAb dose, a hapten-binding affinity of 100 pM is needed for near-maximal hapten retention. We affinity matured 2D12.5 with an initial binding constant of about 10 nM to DOTA-yttrium chelates. Affinity maturation resulted in a 1000-fold affinity improvement to biotinylated DOTA-yttrium, yielding an 8.2±1.9 picomolar binder. The high-affinity scFv binds DOTA complexes of lutetium and gadolinium with similar picomolar affinity and indium chelates with low nanomolar affinity. When engineered into a bispecific antibody construct targeting carcinoembryonic antigen, pretargeted high-affinity scFv results in significantly higher tumor retention of a 111In-DOTA hapten compared to pretargeted wild-type scFv in a xenograft mouse model. Conclusions: We have engineered a versatile, high-affinity, DOTA-chelate-binding scFv. We anticipate it will prove useful in developing pretargeted imaging and therapy protocols to exploit the potential of a variety of radiometals.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:11-0205016

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Engineering an antibody with picomolar affinity to DOTA chelates of multiple radionuclides for pretargeted radioimmunotherapy and imaging</title>
<author>
<name sortKey="Orcutt, Kelly Davis" uniqKey="Orcutt K">Kelly Davis Orcutt</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Department of Chemical Engineering, Massachusetts Institute of Technology</s1>
<s2>Cambridge, MA 02139</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Cambridge (Massachusetts)</settlement>
<region type="state">Massachusetts</region>
</placeName>
<orgName type="university">Massachusetts Institute of Technology</orgName>
</affiliation>
</author>
<author>
<name sortKey="Slusarczyk, Adrian L" uniqKey="Slusarczyk A">Adrian L. Slusarczyk</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Department of Chemical Engineering, Massachusetts Institute of Technology</s1>
<s2>Cambridge, MA 02139</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Cambridge (Massachusetts)</settlement>
<region type="state">Massachusetts</region>
</placeName>
<orgName type="university">Massachusetts Institute of Technology</orgName>
</affiliation>
</author>
<author>
<name sortKey="Cieslewicz, Maryelise" uniqKey="Cieslewicz M">Maryelise Cieslewicz</name>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>Department of Biological Engineering, Massachusetts Institute of Technology</s1>
<s2>Cambridge, MA 02139</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Cambridge (Massachusetts)</settlement>
<region type="state">Massachusetts</region>
</placeName>
<orgName type="university">Massachusetts Institute of Technology</orgName>
</affiliation>
</author>
<author>
<name sortKey="Ruiz Yi, Benjamin" uniqKey="Ruiz Yi B">Benjamin Ruiz-Yi</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Department of Chemical Engineering, Massachusetts Institute of Technology</s1>
<s2>Cambridge, MA 02139</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Cambridge (Massachusetts)</settlement>
<region type="state">Massachusetts</region>
</placeName>
<orgName type="university">Massachusetts Institute of Technology</orgName>
</affiliation>
</author>
<author>
<name sortKey="Bhushan, Kumar R" uniqKey="Bhushan K">Kumar R. Bhushan</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Division of Hematology/Oncology, Beth Israel Deaconess Medical Center</s1>
<s2>Boston, MA 02215</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Boston, MA 02215</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Frangioni, John V" uniqKey="Frangioni J">John V. Frangioni</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Division of Hematology/Oncology, Beth Israel Deaconess Medical Center</s1>
<s2>Boston, MA 02215</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Boston, MA 02215</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>Department of Radiology, Beth Israel Deaconess Medical Center</s1>
<s2>Boston, MA 02215</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Boston, MA 02215</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wittrup, K Dane" uniqKey="Wittrup K">K. Dane Wittrup</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Department of Chemical Engineering, Massachusetts Institute of Technology</s1>
<s2>Cambridge, MA 02139</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Cambridge (Massachusetts)</settlement>
<region type="state">Massachusetts</region>
</placeName>
<orgName type="university">Massachusetts Institute of Technology</orgName>
</affiliation>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>Department of Biological Engineering, Massachusetts Institute of Technology</s1>
<s2>Cambridge, MA 02139</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Cambridge (Massachusetts)</settlement>
<region type="state">Massachusetts</region>
</placeName>
<orgName type="university">Massachusetts Institute of Technology</orgName>
</affiliation>
<affiliation wicri:level="4">
<inist:fA14 i1="03">
<s1>Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology</s1>
<s2>Cambridge, MA 02139</s2>
<s3>USA</s3>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Cambridge (Massachusetts)</settlement>
<region type="state">Massachusetts</region>
</placeName>
<orgName type="university">Massachusetts Institute of Technology</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">11-0205016</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 11-0205016 INIST</idno>
<idno type="RBID">Pascal:11-0205016</idno>
<idno type="wicri:Area/Main/Corpus">003266</idno>
<idno type="wicri:Area/Main/Repository">002F78</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0969-8051</idno>
<title level="j" type="abbreviated">Nucl. med. biol.</title>
<title level="j" type="main">Nuclear medicine and biology</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animal</term>
<term>Antibody</term>
<term>Biomedical engineering</term>
<term>Chelating agent</term>
<term>Hapten</term>
<term>Human</term>
<term>Immunoradiotherapy</term>
<term>Mathematical model</term>
<term>Modeling</term>
<term>Mouse</term>
<term>Nuclear medicine</term>
<term>Pharmacokinetics</term>
<term>Synthesis</term>
<term>Targeting</term>
<term>Treatment</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Immunoradiothérapie</term>
<term>Synthèse</term>
<term>Anticorps</term>
<term>Modèle mathématique</term>
<term>Modélisation</term>
<term>Ciblage</term>
<term>Chélateur</term>
<term>Haptène</term>
<term>Pharmacocinétique</term>
<term>Souris</term>
<term>Animal</term>
<term>Homme</term>
<term>Génie biomédical</term>
<term>Médecine nucléaire</term>
<term>Traitement</term>
<term>DOTA</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Homme</term>
<term>Médecine nucléaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Introduction: In pretargeted radioimmunotherapy (PRIT), a bifunctional antibody is administered and allowed to pre-localize to tumor cells. Subsequently, a chelated radionuclide is administered and captured by cell-bound antibody while unbound hapten clears rapidly from the body. We aim to engineer high-affinity binders to 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelates for use in PRIT applications. Methods: We mathematically modeled antibody and hapten pharmacokinetics to analyze hapten tumor retention as a function of hapten binding affinity. Motivated by model predictions, we used directed evolution and yeast surface display to affinity mature the 2D12.5 antibody to DOTA, reformatted as a single chain variable fragment (scFv). Results: Modeling predicts that for high antigen density and saturating bsAb dose, a hapten-binding affinity of 100 pM is needed for near-maximal hapten retention. We affinity matured 2D12.5 with an initial binding constant of about 10 nM to DOTA-yttrium chelates. Affinity maturation resulted in a 1000-fold affinity improvement to biotinylated DOTA-yttrium, yielding an 8.2±1.9 picomolar binder. The high-affinity scFv binds DOTA complexes of lutetium and gadolinium with similar picomolar affinity and indium chelates with low nanomolar affinity. When engineered into a bispecific antibody construct targeting carcinoembryonic antigen, pretargeted high-affinity scFv results in significantly higher tumor retention of a
<sup>111</sup>
In-DOTA hapten compared to pretargeted wild-type scFv in a xenograft mouse model. Conclusions: We have engineered a versatile, high-affinity, DOTA-chelate-binding scFv. We anticipate it will prove useful in developing pretargeted imaging and therapy protocols to exploit the potential of a variety of radiometals.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0969-8051</s0>
</fA01>
<fA03 i2="1">
<s0>Nucl. med. biol.</s0>
</fA03>
<fA05>
<s2>38</s2>
</fA05>
<fA06>
<s2>2</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Engineering an antibody with picomolar affinity to DOTA chelates of multiple radionuclides for pretargeted radioimmunotherapy and imaging</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>ORCUTT (Kelly Davis)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>SLUSARCZYK (Adrian L.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>CIESLEWICZ (Maryelise)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>RUIZ-YI (Benjamin)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>BHUSHAN (Kumar R.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>FRANGIONI (John V.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>WITTRUP (K. Dane)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Chemical Engineering, Massachusetts Institute of Technology</s1>
<s2>Cambridge, MA 02139</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Biological Engineering, Massachusetts Institute of Technology</s1>
<s2>Cambridge, MA 02139</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology</s1>
<s2>Cambridge, MA 02139</s2>
<s3>USA</s3>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Division of Hematology/Oncology, Beth Israel Deaconess Medical Center</s1>
<s2>Boston, MA 02215</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Department of Radiology, Beth Israel Deaconess Medical Center</s1>
<s2>Boston, MA 02215</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
</fA14>
<fA20>
<s1>223-233</s1>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>15597</s2>
<s5>354000192894700100</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>56 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0205016</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Nuclear medicine and biology</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Introduction: In pretargeted radioimmunotherapy (PRIT), a bifunctional antibody is administered and allowed to pre-localize to tumor cells. Subsequently, a chelated radionuclide is administered and captured by cell-bound antibody while unbound hapten clears rapidly from the body. We aim to engineer high-affinity binders to 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelates for use in PRIT applications. Methods: We mathematically modeled antibody and hapten pharmacokinetics to analyze hapten tumor retention as a function of hapten binding affinity. Motivated by model predictions, we used directed evolution and yeast surface display to affinity mature the 2D12.5 antibody to DOTA, reformatted as a single chain variable fragment (scFv). Results: Modeling predicts that for high antigen density and saturating bsAb dose, a hapten-binding affinity of 100 pM is needed for near-maximal hapten retention. We affinity matured 2D12.5 with an initial binding constant of about 10 nM to DOTA-yttrium chelates. Affinity maturation resulted in a 1000-fold affinity improvement to biotinylated DOTA-yttrium, yielding an 8.2±1.9 picomolar binder. The high-affinity scFv binds DOTA complexes of lutetium and gadolinium with similar picomolar affinity and indium chelates with low nanomolar affinity. When engineered into a bispecific antibody construct targeting carcinoembryonic antigen, pretargeted high-affinity scFv results in significantly higher tumor retention of a
<sup>111</sup>
In-DOTA hapten compared to pretargeted wild-type scFv in a xenograft mouse model. Conclusions: We have engineered a versatile, high-affinity, DOTA-chelate-binding scFv. We anticipate it will prove useful in developing pretargeted imaging and therapy protocols to exploit the potential of a variety of radiometals.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002B26N</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>002B02T</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Immunoradiothérapie</s0>
<s5>04</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Immunoradiotherapy</s0>
<s5>04</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Inmunoradioterapia</s0>
<s5>04</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Synthèse</s0>
<s5>07</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Synthesis</s0>
<s5>07</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Síntesis</s0>
<s5>07</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Anticorps</s0>
<s5>08</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Antibody</s0>
<s5>08</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Anticuerpo</s0>
<s5>08</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Modèle mathématique</s0>
<s5>09</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Mathematical model</s0>
<s5>09</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Modelo matemático</s0>
<s5>09</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Modélisation</s0>
<s5>13</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Modeling</s0>
<s5>13</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Modelización</s0>
<s5>13</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Ciblage</s0>
<s5>14</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Targeting</s0>
<s5>14</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Blancado</s0>
<s5>14</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Chélateur</s0>
<s5>15</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Chelating agent</s0>
<s5>15</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Quelante</s0>
<s5>15</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Haptène</s0>
<s5>16</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Hapten</s0>
<s5>16</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Hapteno</s0>
<s5>16</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Pharmacocinétique</s0>
<s5>17</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Pharmacokinetics</s0>
<s5>17</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Farmacocinética</s0>
<s5>17</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Souris</s0>
<s5>18</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Mouse</s0>
<s5>18</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Ratón</s0>
<s5>18</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Animal</s0>
<s5>19</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Animal</s0>
<s5>19</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Animal</s0>
<s5>19</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Homme</s0>
<s5>20</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Human</s0>
<s5>20</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Hombre</s0>
<s5>20</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Génie biomédical</s0>
<s5>30</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Biomedical engineering</s0>
<s5>30</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Ingeniería biomédica</s0>
<s5>30</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Médecine nucléaire</s0>
<s5>31</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Nuclear medicine</s0>
<s5>31</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Medicina nuclear</s0>
<s5>31</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Traitement</s0>
<s5>32</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Treatment</s0>
<s5>32</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Tratamiento</s0>
<s5>32</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>DOTA</s0>
<s4>INC</s4>
<s5>86</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Rodentia</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Rodentia</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Rodentia</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Mammalia</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>Mammalia</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Mammalia</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="03" i2="X" l="FRE">
<s0>Vertebrata</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="03" i2="X" l="ENG">
<s0>Vertebrata</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="03" i2="X" l="SPA">
<s0>Vertebrata</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="04" i2="X" l="FRE">
<s0>Radiothérapie</s0>
<s5>37</s5>
</fC07>
<fC07 i1="04" i2="X" l="ENG">
<s0>Radiotherapy</s0>
<s5>37</s5>
</fC07>
<fC07 i1="04" i2="X" l="SPA">
<s0>Radioterapia</s0>
<s5>37</s5>
</fC07>
<fN21>
<s1>136</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002F78 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 002F78 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:11-0205016
   |texte=   Engineering an antibody with picomolar affinity to DOTA chelates of multiple radionuclides for pretargeted radioimmunotherapy and imaging
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024